BV-2 microglial cells respond to rotenone toxic insult by modifying pregnenolone, 5α-dihydroprogesterone and pregnanolone levels


Avallone R, Lucchi C, Puja G, Codeluppi A, Filaferro M, Vitale G, Rustichelli C, Biagini G




Cells . 2020 Sep 13;9(9):2091.

Publication Link:

DOI Link:

Neuroinflammation, whose distinctive sign is the activation of microglia, is supposed to play a key role in the development and progression of neurodegenerative diseases. The aim of this investigation was to determine levels of neurosteroids produced by resting and injured BV-2 microglial cells.

BV-2 cells were exposed to increasing concentrations of rotenone to progressively reduce their viability by increasing reactive oxygen species (ROS) production. BV-2 cell viability was significantly reduced 24, 48 and 72 h after rotenone (50–1000 nM) exposure. Concomitantly, rotenone (50–100 nM) determined a dose-independent augmentation of ROS production.

Then, BV-2 cells were exposed to a single, threshold dose of rotenone (75 nM) to evaluate the overtime release of neurosteroids. In particular, pregnenolone, pregnenolone sulfate, progesterone, 5α-dihydroprogesterone (5α-DHP), allopregnanolone, and pregnanolone, were quantified in the culture medium by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. BV-2 cells synthesized all the investigated neurosteroids and, after exposure to rotenone, 5αDHP and pregnanolone production was remarkably increased.

In conclusion, we found that BV-2 cells not only synthesize several neurosteroids, but further increase this production following oxidative damage. Pregnanolone and 5α-DHP may play a role in modifying the progression of neuroinflammation in neurodegenerative diseases.

Scroll to Top