Background
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in human circulation, and adrenocorticotropic hormone (ACTH) is considered the major regulator of its synthesis. Pregnenolone sulfate (PregS) and 5-androstenediol-3-sulfate (AdiolS) have recently emerged as biomarkers of adrenal disorders.
Objective
To define the relative human adrenal production of Δ5-steroid sulfates under basal and cosyntropin-stimulated conditions.
Methods
Liquid chromatography-tandem mass spectrometry was used to quantify three unconjugated and four sulfated Δ5-steroids in (1) paired adrenal vein (AV) and mixed venous serum samples (21 patients) and (2) cultured human adrenal cells both before and after cosyntropin stimulation, (3) microdissected zona fasciculata (ZF) and zona reticularis (ZR) from five human adrenal glands, and (4) a reconstituted in vitro human 17α-hydroxylase/17,20-lyase/(P450 17A1) system.
Results
Of the steroid sulfates, PregS had the greatest increase after cosyntropin stimulation in the AV (32-fold), whereas DHEAS responded modestly (1.8-fold). PregS attained concentrations comparable to those of DHEAS in the AV after cosyntropin stimulation (AV DHEAS/PregS, 24 and 1.3 before and after cosyntropin, respectively). In cultured adrenal cells, PregS demonstrated the sharpest response to cosyntropin, whereas DHEAS responded only modestly (21-fold vs 1.8-fold higher compared with unstimulated cells at 3 hours, respectively). Steroid analyses in isolated ZF and ZR showed similar amounts of PregS and 17α-hydroxypregnenolone in both zones, whereas DHEAS and AdiolS were higher in ZR (P < 0.05).
Conclusion
Our studies demonstrated that unlike DHEAS, PregS displayed a prominent acute response to cosyntropin. PregS could be used to interrogate the acute adrenal response to ACTH stimulation and as a biomarker in various adrenal disorders.